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Unsteady flow over a stationary sphere with a small fluctuation in the free-stream 
velocity is considered a t  small Reynolds number, Re. A matched asymptotic solution 
is obtained for the frequency-dependent (or the acceleration-dependent) part of the 
unsteady flow at very small frequency, w ,  under the restriction St % Re 4 1, where St 
is the Strouhal number. The acceleration-dependent part of the unsteady drag is 
found to  be proportional to  St - w instead of the wi dependence predicted by Stokes’ 
solution. Consequently, the expression for the Basset history force is incorrect for 
large time even for very small Reynolds numbers. Present results compare well with 
the previous numerical results of Mei, Lawrence & Adrian (1991) using a finite- 
difference method for the same unsteady flow at small Reynolds number. Using the 
principle of causality, the present analytical results at small Re, the numerical results 
at finite Re for low frequency, and Stokes’ results for high frequency, a modified 
expression for the history force is proposed in the time domain. It is confirmed by 
comparing with the finite-difference results a t  arbitrary frequency through Fourier 
transformation. The modified history force has an integration kernel that  decays as 
t -* ,  instead of t-i, a t  large time for both small and finite Reynolds numbers. 

1. Introduction 
In a recent paper (Mei, Lawrence & Adrian 1991, hereinafter referred as 

MLA), numerical results are obtained for the unsteady drag on a sphere a t  finite 
Reynolds number with a small oscillation in the free-stream velocity in the form 
of U,(t)  = U(l with a, << 1, U being the mean free-stream velocity, w the 
frequency of the oscillation, t‘ the dimensional time. The calculations are based on 
the finite-difference method of Mei & Plotkin (1986) using the stream function- 
vorticity formulation. It is found that the classical Stokes solution of the unsteady 
Stokes cquation does not correctly describe the bchaviour of the unsteady drag a t  
low frequency. The numerical results indicate that the force increases linearly with 
frequency when the frequency is very small instead of the square root of the 
frequency as the classical Stokes solution predicts. This implies that  in the time 
domain the Basset force (Basset 1888) has a much shorter memory than that 
predicted by classical theory. 

To gain insight into the unsteady particle dynamics, especially a t  low frequency, 
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and to obtain a more realistic expression of the history force, we reconsider the same 
unsteady flow problem discussed in MLA using analytical approaches. 

Following Lighthill (1954), a regular perturbation scheme is applied first to 
decompose the solution into a steady part and an unsteady part by assuming a small 
amplitude of the oscillation in the free stream velocity. The method of matched 
asymptotic expansion is used to solve for the unsteady flow field a t  low Reynolds 
number and small frequency. The solution for the unsteady part is analogous to that 
of Proudman & Pearson (1957) for the steady part. For small Strouhal number, St 
(or low frequency) two terms of the unsteady solution are sought. The first 
corresponds to the quasi-steady state; its outer solution can be obtained easily by 
differentiating the steady outer solution of Proudman & Pearson (1957). The second 
term is acceleration dependent. I ts  solution is obtained separately in the inner region 
and the outer region. The acceleration-dependent drag is found to be linearly 
proportional to the Strouhal number, St. The analytical value of the drag coefficient 
a t  small Re and St agrees well with the value computed using the finite-difference 
method. 

After the drag at low frequency (St < Re) is determined, it is used along with the 
Stokes solution a t  high frequency and the numerical results a t  finite Re to construct 
an expression for the unsteady drag. The integration kernal for the history force is 
determined based on the principle of causality. The new history force, which decays 
as t-2 a t  large time, has a much shorter mclmory than that predicted by the classical 
Basset solution. 

2. Asymptotic expansion of the unsteady Navier-Stokes equation at 
St<Re< 1 

2.1. Governing equation and the steady-state solution 

As has been discussed in MLA, the unsteady Stokes cquation is not adequate to 
describe the flow field at small Strouhal number, St, because the nonlinear convection 
term that is neglected in the Stokes equation may be larger than the unsteady term 
in the complete Navier-Stokes equation. 

In  terms of the stream function in the spherical coordinates ( r ,  0, $), the complete, 
unsteady, dimensionless Navier-Stokes equation for axisymmetric flow is 

In the above, 
= case, 

I 
and 

Re’ = Ua/v = Reynolds number based on radius of the sphere, 

St = wa/U = Strouhal number. 

Here, a is the radius of the sphere and v is the kinematic viscosity of the fluid. The 
stream function in (1)  and the operator D: have been scaled by Ua2 and la2 
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respectively. (Note that Re = U2a/v = 2Re’ was used in MLA.) The boundary 
conditions for oscillating axisymmetric flow are 

on r =  1, (4) 

$++(1+ale- i t )r2(1-p2)  as r +  00. ( 5 )  

To solve (l) ,  a regular perturbation scheme for the flow field is applied first. This 
technique is the same as in the numerical work of MLA. It was used by Lighthill 
(1954) and Ackerberg I% Phillips (1972) to study unsteady boundary layers with 
small fluctuations in the magnitude of the free-stream velocity. Let 

(6) 

where $, and a, $l correspond to the steady-state solution and the amplitude of the 
first-harmonic unsteady flow. Substituting (6) into (1)  and collecting the terms of 
O(1) and O(al),  one has 

$( r ,  p, t )  = $&, p) + a1 e-’l $l(r, p) + Obi ) ,  

and 

The boundary conditions for $s and $1 are identical: 

$ + +r2 (  1 -p2) as r + m .  (10) 
A solution to the steady-state equation (7) for Re 4 1 has been given in Proudman 
& Pearson (1957).  The inner solution for $s is 

$s 

2 r z - 3 r + l - - + -  Q2(p) +h.o.t. = $so+Re’$-,l+h.o.t., (11) r r2 1 
where h.0.t. denotes higher-order terms. This is accurate up to O(Re’) and is valid for 
T x O(1). The outer solution is 

Ys(P, = Ref2 $ s ( r ,  p )  
- 1  - -4 2 (1 -p2 )  -Re’ $Q0(p) [l- exp ( -&( 1 - p)) ]  + h.0.t. 

= Ys0+Re’ Ysl+h.o.t. 

In the above, p = Re’r, 
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with p,(p) being the Legendre polynomial of degree n. In particular, QO(,u) = 1 + p  
and Q2(p)  = -&(l - p 2 ) .  The uniformly valid solution, which is accurate up to O(Re'), 
happens to be the Oseen's solution 

Following Proudman & Pearson, we shall pursue approximate solutions to  the 
unsteady equation (8) for the inner and outer regions separately. 

2.2. Inner and outer expansions for the unsteady solution 
In  the inner (Stokes) region, the solution to (8) for St 4 Re' 4 1 can be sought in the 
form 

Substitution of (11) and (16) into (8) leads to 

= [$lo +Re' $11 + . . .] +St[$,, +Re' $21 + . . .] + . . . . (16) 

O( 1) : D: $10 = 0, (17) 

O(Re') : 

2 
+ 7 [D: $so L, @20 + D," $2"L7 @sol - iD," $10 * 

The boundary conditions for the inner solutions governed by (17)-(20) are 

for nm = 1 0 ,  1 1 ,  2 0  and 2 1. 

p =Re'r - 0(1), is 
The equation for the stream function in the outer (Oseen's) region, with 

2 

P 
+,[U~~sL,Yl+D;Y',L,Y,]= D:!Pl, (22) 

where !Pl = R e ' 2 ~ l .  (23) 
In order to  perform the asymptotic expansion for the small-frequency case, the 
unsteady term is assumed to be much smaller than the rest of the terms in both the 
inner and the outer regions. This requires StlRe' 4 1 as (22) suggests. On the other 
hand, the inner solutions only require St 4 1, which is less restrictive than the 
former, for (16) to hold. This suggests, formally, the use of StlRe' as a small 
parameter in the expansion of the outer solution. 
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The outer solution can thus be pursued formally in the form 

(24) 
st Yl = [ Y l , + R e ’ Y l l +  . . . ] + 7 [ Y 2 , + R e ’ Y 2 1 + . . . ] +  .... 

Re 

The boundary conditions for the outer solutions a t  infinity are 

U,, - U,, - U2,+0 and Y1+&’(1-p2) as p+w, (25) 
where U,, represents the outer velocity of the corresponding order. 

boundary condition as p + CO, 

The equations governing the remaining terms in (24) become 

The solution to the first term, Ylo, is the uniform-stream solution satisfying the 

(26) y - 1 2 1 -  
10 - 4 ( P2).  

o ( 2 ) :  

2 

P 
+ 7 r q  y 2 0  Lp Y S l +  D; YSl L, y 2 0 1  = Dp” y 2 1 .  

(29) 

2.3. Quasi-steady (St = 0) solutions in the inner and outer regions 
The solution for the quasi-steady state flow is sought first. Equation (17) is the 
classical Stokes equation. The general solution for $lo, which satisfies the boundary 
conditions a t  r = 1 and matches the outer solution given by (26) to  O(p2), is 

$lo = a(2r2-33r+l/r)(1-p2). (30) 
The remaining terms in llrlo are to be matched to higher-order outer solutions. 

The outer solution for Yll is obtained by taking the appropriate partial derivative 
of Yl, with respect t o  the fluctuating free-stream velocity, as suggested by Lighthill 
(1954), as 

Yll = -$( 1 -p2 )  exp [ -+( 1 -p ) ] .  
See also Mei (1990) for details. It can be shown to satisfy (27) by direct substitution. 

As p + 0, Yll in (31) should match the rotational part of the inner (Stokes) solution 
$lo in (30). As Re’+O, the one-term expansion of the two-term outer solution written 
in the inner variable gives 

1 1 1  1 
-[Yl,+Re’ Yll] = --p2(1 -y2)--,$(1-p2)e-p(1-~)/2 
Re’2 2 Re’, Re - &r2( 1 -p2)  -$r( 1 -p2)  + O(Re’). (32) 

This matches the first two terms of the one-term solution, given by (30). With 
the solutions for $la, Yl, and Yll obtained, the solution to (18) for $11 can now be 
sought. 

Following Proudman & Pearson (1957), (18) becomes 
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(33) that satisfies the boundary conditions at r = 1 and the 
a t y = + l  is 

328 

A particular solution 
symmetry conditions 

$yl = :(2rP-3r+ (34) 

Rewriting (32) and keeping two terms of every order, 

1 
-[Ylo+Re’ Yll] - !jr2(1-p2)-~(l-,u2)+Re’[~r2(1-,u2)+$r2Q2(,u)]+h.o.t. (35) Re’ 

To match the O(Re’) term in (35), the inner solution $11 must be, as a combination 
of general solution $fl and particular solution +yl, 

kll = kfl+!% 

Obviously, the first two leading-order terms of (36) as r + 00 match the two O(Re’) 
terms in (35). The quasi-steady drag up to O(Re‘) based on ($lO+Re’$ll) is thus 

D,,/D, = a1 e-it( 1 +$Re’), (37) 

where Ds = 6npUu is the Stokes drag. In deriving (37), it is noted that the second 
term in (36) does not contribute to  the drag because of its antisymmetry. The first 
term in (36) is proportional to the Stokes solution for steady flow over a sphere with 
a proportionality constant of 2. This observation will be used later in deriving (59). 

2.4. Accelerution-dependent solution in the inner and outer regions 
From (19), (20) and (28), (29), we see that the linear equations governing e2, and Y2, 
are homogeneous while those governing $21 and Y21 are driven by DF kll and D: Yll. 
Starting from the outer solution, equation (28) for Y,, can be solved as follows. The 
general solution for Di Y2, is the same as given by Proudman & Pearson (1957), 

m 

D; y2, = @p’2 c A,(!jp)%+;(&) Qn(,u), 
n=l  

where k,+$p) is the modified Bessel function. It can be expressed as 

For small values of p,  the least-singular term for Di Y2, is of order ( l / p )  Ql(p )  when 
n = 1. Expressing this least-singular part of D; Y2, in terms of the inner variable and 
noting that DZ Y = D,“ $, one has 

St St 1 
-DE Y20 - -- Q ~ ( P ) .  Re‘ Re’ Re’r 

It is obvious that none of the terms in (39), including the above, can be matched to 
any of the inner solution with D:@ - O(St/Re’2).  This means that 

D; Y2, = 0. (41) 

Yzo = 0. (42) 

The boundary condition a t  infinity and the matching with the inner solution demand 
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Substitution of Y,, = 0 into (29) yields the following equation for Y21: 

Equation (43) is similar to (28) except for the driving term on the right-hand side. 
The homogeneous solution for Di Y2, is the same as given in (38). The particular 
solution to (43) can be found by applying Goldstein's transformation, 

D;4 Yz, = e " p / 2 @ .  

Equation (43) reduces to 
(44) 

Assuming a particular solution for @ in the form of 

Qrp = ibI(P) (1 - P 2 )  +S2(P) Q2@)1>  

one obtains the following equations for gl(p) and g2(p) : 

(48) and 

Solving the ordinary differential equations for g1 ( p )  and g2(p), the particular solution 
for @ is 

which in turn gives the particular solution for Di Yz, as 

g"- c2 -+- t) g - _  - i(p+2)e-p/2. 

QrP = i[3 4P(  1-p2)--3 I S P  2 ( 1- p2)-$'&2(p)1 e-p/2, 

ql = i[$(l-p2)-2 l6P 2 ( 1 -p2)-3 8p 2 Q2(p)]  e-p(1-8)/2. 

(49) 

(50) 

Letting p )  = iF(p,  p)  e-p/2(1-p)), (51) 

equation (50) becomes 

(i-pz)a*F (i-p2)aF a2F aF 
~- +--(1 - p ) - + - F  

p2 ap2+--- P aP2 aP 2 

=;p(l-p2)-" 1SP 2 ( 1 - p 2 ) - - 3  8P 2 &2(P)' (52) 

A particular solution that satisfies (52) is 

F(p,p)  = - j y ( l - p 2 ) .  

Thcrcforc, the particular solution to (43) for Y2, is 

e , ( p , p )  = -i$p2(1 - p 2 ) e - p ( 1 - p ) / 2 .  

(53) 

(54) 

The general solution for Y2, is zero. It is dctcrmined by matching thc outer 
solution Y with the inner solution $ using arguments similar to those leading to  (41) 
and (42) (see Mei 1990 for dctails). Thus 

(55)  Y2, = Q1(p, p) = - i;p2( 1 - p 2 )  e-p(1-p)/2, 
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and 

which satisfies (19) and matches !P21 to the leading order. 
I n  summary, the flow field in the inner region is described by 

Wi ,u) x $,(.l P )  + a1 Cit $l@, P )  

x i ( 2 r 2 - 3 r + : )  (1-,u2) 

2 r 2 - 3 r + 1 - - + -  Q2(,u) 
r r2 1 

+ a1 eit {a ( 2r2 - 3r + !) ( 1  -p’ )  

+Re’ - 2r2-33r+- (l-,uz)+- 2 r 2 - 3 r + 1 - - + -  &,(,u) 
[:6( :) :( r r2 

+ st( -is) [i (2r2- 3r + :) (1 -,u2)]}. (57) 

The outer solution is described by 

Vu(P, P )  x P&l P )  + 011 Cit ‘y,(P> Iu) 
x $p2(i-,u2)-~e’~Qo(,u){1-exp[-~p(l-,u)]} 

+ale-  i t  {3p 1 2 (1-,a2)--Re’~p(l-,u2)exp[-$p(1-,u)] 

+St( -ii)p2(1 -,~~)e-p(l--p)/~}. (58) 

The drag on the sphere can now be evaluated from the inner solution given by (57). 
The contributions to  the total drag are from the terms containing (I-$)  because 
Q2(p) is antisymmetrical. Note that the first term of ~ in (57) is the steady Stokes 
solution and the rest of the contributing terms have the same radial dependence 
(2rZ + 3r + l / r ) ,  so the drag coefficient is easily obtained as 

cD/c,, = I + a$e’ + a1 e-it{ 1 +;Re’ + . . . - i$St + . . .} 
(59) - - DSteady +“le-it[D1,+a,J, 

where CD, = 24/Re = 12/Re’ is the drag coefficient of the steady Stokes flow over a 
sphere. In  (59), the leading-order unsteady drag is D,, = 1 +$Re’. This is independent 
of the frequency and i t  is in fact the quasi-steady component of the unsteady drag. 
The real part of the acceleration-dependent drag was shown to be of O(St2) in MLA. 
The leading-order acceleration-dependent drag is D,, = - i;St which is linearly 
proportional to the frequency. The significance of (59) is that, through detailed 
analysis, the leading-order term of the acceleration-dependent unsteady drag at  low 
frequency is again shown to be of O(St), which agrees with the finding of MLA based 
on the finite-difference results. It shows that the Stokes solution for the unsteady 
problem is not valid a t  low frequency. The reason why the Stokes solution fails to 
describe the low-frequency drag may be explained as follows. 

As pointed out in MLA, there are three lengthscales in this low-Reynolds- 
number, unsteady flow, ZStokes - O(1) for the Stokes region where diffusion is domi- 
nant, loseen - O(Re-l) for the Oseen region where convection is important, and 
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lunsteady - O(a- l )  (see (63) for a )  for the region where unsteadiness is important. At low 
frequency, such that loseen/lunsteady = €/Re 4 1 ,  the vorticity generated on the wall 
decays exponentially in the Oseen region. Thus the region r - lunsteady is not 
dynamically important in transporting the vorticity. The present analysis takes this 
subtle, but important, point into consideration in formulating the asymptotic 
expansion. However, the Stokes solution, neglecting the convection mechanism of 
the vorticity transport, assumes that the region r - lunsteady is always important 
dynamically and that the unsteady term always balances the diffusion term. This is 
not true at low frequency. Thus, the dynamics of the vorticity transport surrounding 
the sphere are incorrectly described by the Stokes solution. 

3. Comparison between the asymptotic analysis and the finite-difference 
solution 

In order to assess the validity and accuracy of the above analytical results, the 
numerical results of MLA are next compared with them. The numerical results were 
obtained using the finite-difference method and they are valid for finite Re. The 
smallest Reynolds number computed was Re = 0.1, or Re' = 0.05. The smallest 
Strouhal number investigated a t  Re' = 0.05 was St = 0.0025. The result of the 
present asymptotic analysis, is valid only for St/Re' < 1 and Re' 6 1. The parameters 
(Re', 8t) = (0.05,0.0025) can be considered to fall in the ranges of the validity of the 
asymptotic analysis, i.e. St/Re' = 0.05 < 1 and Re' = 0.05 4 1. Thus the comparison 
is meaningful. 

The numerical solution for the unsteady stream function is represented as 
(rl = (rlR+i$lI. Figure 1 (a )  compares the finite-difference solution of $lJSt with 
the corresponding analytical solution based on the matched asymptotic expansion 
a t  8 = in from r = 1 to r = 150. The inner and outer solutions of (57) and (58) are 
used to approximate the analytical solution, given as 

As ( r  - 1 )  + 0, (60) gives negative values near r = 1. Thus the inner solution in (57) 
is used for r -  1 < 0.1. The above expression is not valid for very large r because the 
O(r)  term in (60) is not matched between the inner and outer solutions. However, in 
the finite computational domain (1 < T < 150), the comparison between the finite- 
difference solution and the analytical solution is surprisingly good. The discrepancy 
in the inner region is of O(Re'), and it results because the solution to  (20) for $czl is 
not pursued. 

Figure l ( b )  compares the real component of the unsteady stream function, 
$.,,(r, 0 = tn), of the finite-difference solution and of the asymptotic solution a t  
(Re', St) = (0.05,0.0025). This corresponds to the quasi-steady-state solution. The 
agreement is very good for plR varying from 0.00346 at the first grid away from the 
wall to 10901 a t  r z 150. The difference near the wall is again of O(Re') and i t  is due 
to  the neglect of the higher-order terms in the analytical solution. 

In  the region close to the wall, both real and imaginary parts of the analytical 
solution for the stream function have errors of O(Re') compared with the finite- 
difference solution. However, the vorticity, ( l /r  sin 0) D," $, of the two solutions 
agrees very well on the wall. Figure 2 compares the imaginary part of the analytical 
wall vorticity at (Re', St) = (0.05,0.0025) with the numerical solution. The slight 
asymmetry of the numerical solution with respect to e = $ n  is due to the small 
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FIGURE 1 .  Comparison between the stream functions of the asymptotic (-) and the finite- 
difference (0) solutions at Re’ = 0.05, St = 0.0025 and 0 = $ from r = 1 to  150. (a) Imaginary 
or acceleration-dependent part, ( b )  real or quasi-steady part at low St. 

0 0.5 1.0 1.5 2.0 2.5 3.0 II 

FIGURE 2. Comparison between the imaginary part of the unsteady wall vorticity of the 
asymptotic (-) and finite-difference (0) solutions a t  (Re’, St) = (O.OA,0.0025). 

B 



Flow past a sphere with an oscillation in the free-stream velocity 333 

3 
4 

lo-’ r 

nonlinearity picked up in the computation. This asymmetry may be associated with 
Q&), and it has a high-order effect which does not appear in the lower-order 
asymptotic expansion. 

Figure 3 shows f(Re’) = limst ,o(D,I/St), the acceleration-dependent drag scaled by 
St, as a function of Re at very small frequency, for Re ranging from 0.1 to 100. The 
numerical values of f(Re’) are obtained by taking D,,/St from the smallest St 
computed for each Re. The smallest St for each computation is chosen such that, as 
the frequency doubles, the new D,, increases by a factor of two. It can be seen that 
the numerical solution approaches the analytical prediction of D,,/St = 0.75 as 
Re + 0.  The accuracy of the low-Reynolds-number asymptotic solution in predicting 
the unsteady drag is confirmed. For finite Re’, a curve-fit based on the analytical and 
numerical results can be obtained to  approximate f(Re’) : 

(61) DII(St)  x -f(Re’) St = - (0.75 +0.544Re’) St. 

The corresponding imaginary part of the history force, DIIH, at low frequency is 

D I I H ( S t )  = D I I ( s t )  -Im (Dadded-mass(B) +Daccel. 

= - f (Re’) St - s2 
= -fH(Re’)St = - (0.75+0.211Re’) St 

B = (Re St/4); = (Se’ St); 

(62) 

(63) 
is the Stokes number. It should be noted that the results of the numerical solution 
are based on Re < 100. Thus, (62) may be valid only for Re’ < 50. Equation (62) will 
be used next to derive a general expression for D,,,(St) at finite frequency. 

(see (64b)  for Dadded-mass and Daccl. frame) where 

4. Behaviour of the unsteady drag in the time domain at finite Reynolds 
number 

I n  this section, equation (62), the Stokes solution a t  high frequency, and the 
numerical results of MLA are used to obtain and verify a general expression for 
D,,,(St) in the frequency domain. The principle of causality is then used to deduce 
the behaviour of the history force in the time domain. 
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E 

FIGURE 4. Comparison between the imaginary part of the unsteady drag of the finite-difference 
solution (filled symbols) and the direct interpolation (open symbols) a t  Re’ = 0.5 (0) and 
Re’ = 12.5 (0). Dashed line is Stokes solution. 

For the problem considered here, the unsteady component of the drag of the 
Stokes solution in the frequency domain has the form 

d,(w) = 1 + ( 1 - i )  E - iie* - iie2. 

d i ( w )  = DQs(Re) +D,H(Re’, St) +Dadded-mass(E) +Dacce l .  frame(€) 

(64a)  

(64b) 

Correspondingly, the unsteady drag at jinite Reynolds number can be represented as 

(see MLA for details). The term ( 1  -i) E in (64a) corresponds to the Basset force. For 
finite Reynolds number, the Stokes’ solution (64 a )  remains valid asymptotically a t  
high frequency, i.e. E % 1, because the Stokes layer of thickness O(e-’) is the 
dominant structure in the immediate neighbourhood of the sphere. As shown in 
MLA, the smaller the Reynolds number, the closer the Stokes solution approaches 
the finite-difference solution. The term D,,,,,, is due to  the acceleration of the 
reference frame that is attached to the sphere. If the free-stream velocity is steady 
and the sphere is oscillating, this term is zero. 

For the intermediate range of values of St, an interpolation based on (62)  and (64a)  
is proposed for the imaginary part of the history force 

This expression recovers both (62) and (64a) when St is small or large. For 
intermediate St and for Re’ = 0.5 and Re’ = 12.5, the expression for D,,,(St) given 
above is compared with the numerically computed value of D,,,(St) in figure 4. 
Equation (65)  is confirmed by the finite-difference results. 

A similar interpolation could be dcvised for DIRH(St). However, knowing either 
D,,,(St) or DIRH(St) is sufficient to deduce the history force in the time domain. This 
statement will be justified later. 

Consider a, as a function of w and treat C;(w) = a l ( w )  U as the Fourier component 
of ui(t’), i.e. 

~ ; ( w )  = a l ( w )  C = dt‘ . (66) 
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The dimensional unsteady fluctuating velocity may be superimposed on the steady 
mean velocity U so that the unsteady part of the drag, Fi(t’), corresponding to  the 
unsteady velocity u;(t’) is 

Fi(t’) = 6rtpaDQs(Re’) uL(t’) + D,,(St, Re’) a;(@) e-iwt‘dw 

The first term in (69) is the quasi-steady drag ; it is given as 

DQs = 1 + b ( l  +n) Ren (70) 

in MLA, where b = 0.15 and n = 0.687 are the empirical constants (see Clift, Grace 
& Weber 1978). The combination of the steady-state drag and this quasi-steady drag 
may be expressed in one term as 6rtpaD,(Re(t)) [U+ui(t’)] with 

The last term in (69) corresponds to  the force due to  the added mass and the free- 
stream acceleration. Numerical results show that the added-mass force is inde- 
pendent of the Reynolds number. The second term in (69) is the history force, FH(t’). 
It is a function of both Re and St. Using (67), the history force can be written as 

where 

is the integration kernel of the history force. I n  the Stokes regime, the kernel is 

H ( ~ ‘ - T )  
K(f-7) = 

(rtv(t’ -7)/a2)1 

where H(t‘-T) is the Heaviside step function. For the present finite-Reynolds- 
number case, K(t’ - 7 )  is expected to be proportional to the Heaviside step function 
based on the principle of causality, i.e. the motion of the particle can be influenced 
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only by its previous history, not by its future behaviour. This step-function 
behaviour of the history force kernel gives a condition to relate DIRH(St)  and 
D,,,(St). For E' = 7-t' > 0, (72) can be written as 

1 - m  +'I --[DIRH(w)cos(w&)-DIIH(~)sin(w~)]dw = 0. (73) 
2 R  -a, w 

The imaginary part of (73) is zero because 

DiRH(-w) = D i R H ( u ) ,  DiIH(-u) = -DIH(@)- (74) 

For the real part of K( - c) to vanish, the following must hold for all values of 
g>0: 

fi DIRH(w) sin ( w g ) / w  dw = D,,,(w) cos (wF)/o do. 1: (75) 

Thus, DIRH(w)  can be evaluated from (75) once D1,,(w) is given. 
Now consider 7' = t'-7 > 0. The history force kernel can be written as 

i.e. 

where 7 = f U / a  is the dimensionless time scaled by the free-stream mean velocity 
and the radius of the particle. A closed-form expression for the above integration can 
be obtained in terms of the Fresnel integral, but this expression is too complex to  
extract any useful information. Instead, we utilize the asymptotic behaviour of the 
K ( 7 ) .  For small and large values of q ,  the following asymptotic expression can be 
obtained using the integration by parts for K(7)  : 

and 
2 &(Re') 1 
n: Re' q2'  

K(7)  - for v+m. 

Combining the above two expressions for K ( q ) ,  an interpolation is proposed for 
arbitrary 7 as follows: 

To confirm the validity of the interpolation given by (79), a Fourier transform has 
been performed on the above K(7)  to obtain approximate values of DIRH(St)  and 
D,,,(Xt) in the frequency domain. They are then compared with the corresponding 
finite-difference results. Figure 5 shows comparisons of D,,,(St, Re' = 0.05), 
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FIGURE 5.  Comparison between the history force in the frequency domain, DIH(St),  of the finite- 
difference solution (-.-) and that based on the Fourier transformation of the interpolated 
history force kernelK(t'-T), equation (79) (0). ( a )  -D,,,(St, Re' = 0.05); (b )  -D,,,(St,Re' = 0.5); 
(c) DIRH(St ,  Re' = 0.5). Dashed line is the Stokes solution. 
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FIQURE 6. Beheviour of the modified history force kernel at various Reynolds numbers. 
(a) K(t--7) ; ( b )  renormalized kernel K ( t - ~ ) / R e ’ k  

DIIH(St, Re’ = 0 .5 )  and DIRH(St, Re‘ = 0.5) between the two types of DIH(St ) .  They 
agree with each other very well over a wide range of Stokes numbers. 

To recapitulate, the dimensional form of the modified history force in the time 
domain is given by 

(80) 

where 

This expression for the history force is valid for particles possessing large slip velocity 
relative to the turbulence of the carrier fluid. 

It is possible to generalize (80) and (81) to extend the application of the present 
modified history force to the more general situation regarding the particle motion in 
turbulence. The first is to change the lower integration limit from - co to t i ,  where 
t; is the instant when the particle is introduced to the fluid. This modification is exact 
because dui1d.r = 0 for t‘ < t i .  The second generalization is to replace U ,  the strong 
mean velocity, by (u - v ) ,  the instantaneous relative velocity between the fluid and 
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the particle. It is not entirely accurate and cannot be verified directly in the context 
of this study. The physical reason for this generalization is similar to that for 
approximating the quasi-steady drag using the steady-state drag coefficient and the 
instantaneous velocity difference. Here, we hypothesize that it is the form of the 
kernel that is most important dynamically and that the convection velocity, which 
defines U(t) and Re(t) in (81), only influences the results parametrically rather than 
dynamically. 

Having obtained the history force kernel a t  finite Reynolds number, it is 
interesting to examine how the kernel is influenced by the Reynolds number, or the 
nonlinearity of the system. Figure 6(a)  shows K(t-T) ,  given by (79), as a function of 
( t - T )  a t  Re‘ = 0.05, 0.5, 12.5 and 50. A t  small ( t - T ) ,  the kernel behaves as ( t - T ) - f  

and increases with Re’. At large ( t - 7 ) ,  it decreases in time as (t-T)-2 but has a more 
complex dependence on the Reynolds number: K(t-7,Re’ = 0.05) is larger than K 
for Re’ = 0.5 and K for Re‘ = 12.5, but it is less than that for Re‘ = 50. To see the 
effect of Reynolds number more clearly, the kernel is renormalized by Re‘; and the 
dependence of K(t-T,Re’)/Re’f on ( t - 7 )  and Re’ is shown in figure 6(b). At small 
times, say (t - 7) < 0.1, the renormalized kernel is almost independent of Re’, and the 
Basset (1888) solution is certainly a good approximation for small time. At larger 
(t-T), K(t-7,  Re’)/Re’f decreases as Re‘ increases for 0 < Re‘ < Re’* with 
Re‘* z 0.75/0.211 = 3.55. This Re‘* is obtained by taking the derivative of 
Re’i/(0.75+0.211Re’)3 with respect to Re‘ and setting it zero. At Re‘ >Re’*, the 
renormalized kernel increases with Re’. This is probably due to the nonlinear 
interaction between the boundary layer of the steady flow (as Reynolds number 
increases) and the oscillating free stream. The present result for K(t -7 ,  Re’) clearly 
shows that the classical Basset history force is not uniformly valid for long time even 
for very small Reynolds number, which one might consider as a Stokes flow problem. 

5. Discussion of the unsteady drag formula by Odar & Hamilton 
Odar & Hamilton (1964) performed an experiment to investigate the unsteady 

drag of a sphere executing a sinusoidal oscillation in an oil tank. They proposed a 
formula for the unsteady drag at finite Reynolds number based on their experimental 
results. It consists of the quasi-steady-state drag (which is independent of the 
acceleration), the modified history force, and the modified added-mass force, 

where C,  is the steady-state drag coefficient evaluated with the instantaneous 
Reynolds number, and C ,  and CA are the modifying coefficients for the history force 
and the added-mass force. The modification is mainly governed by an ‘acceleration ’ 
parameter, 

i.e. the ratio of instantaneous velocity to the acceleration of the oscillating sphere. 
The modifying coefficients are given as (see Odar 1966) 

C, = 2.88+3.12/(A,+l)3; CA = 1.05-0.066/(A,2+0.12). (84) 

Their formula seems to agree well with their experimental data. However, there are 
two specific aspects that should be addressed here. 
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First, in their formulation, it was assumed a priori that the history force in the 
time domain is still proportional to 

dr 

The latter may be valid only a t  zero Reynolds number, in view of the foregoing 
analyses and discussion. There is apparently little justification for expressing the 
history force at finite Reynolds number in the form (82) without considering the 
possible changes in the integration kernel which result from the nonlinearity of the 
system, as the present study has indicated. Modification by introducing the 
coefficient C ,  in front of the integration is neither physically justified nor 
mathematically rigorous. 

Secondly, it should be noted that the Basset solution for unsteady drag in the time 
domain in the Stokes flow regime is derivable from the Fourier transformation of the 
unsteady drag in the frequency domain (see Landau & Lifshitz 1959). The data for 
the unsteady drag in the frequency domain must cover a large range of frequencies. 
In Odar & Hamilton’s (1964) experiment, only a few discrete frequencies were 
investigated, and the frequencies were actually quite large in terms of the Stokes 
number. From the standpoint of Fourier transformation, it is not possible to  infer the 
behaviour of the unsteady drag in thc time domain from a small number of data 
points in the frequency domain, whether the time period in measuring the unsteady 
force for single harmonic oscillation is small or large. The fact that  the total unsteady 
drag based on their expressions for the history force and the added-mass force agrees 
very well with their measured value suggests that the errors in the history force and 
in the added-mass force merely cancel each other owing to the way they were 
constructed. Unphysical features associated with their expressions for the modified 
history force and the added-mass force on a sphere executing a single harmonic 
oscillation in a stagnant liquid have been uncovered (Mei 1991) near the instant when 
U ( t )  = 0 for low and moderate frequencies, and they indeed cancel each other in the 
expression for the total unsteady drag on an oscillating sphere. They may not, 
however, always cancel in other kinds of unsteady flows. 

6.  Conclusions 
A matched asymptotic solution for the unsteady Navicr-Stokes equation has been 

obtained for axisymmetric flow over a stationary sphere a t  small Reynolds number 
with small, low-frequency fluctuations in the free-stream velocity. The unsteady 
drag due to  the small-amplitude oscillation in the stream velocity is examined and 
compared with that obtained using the finite-difference method. At small Reynolds 
number, the acceleration-dependent force computed is linearly proportional to the 
frequency. The classical Stokes solution is not valid at small o for small values of 
Reynolds numbers. 

The behaviour of the history force in the time domain has been examined based on 
the analytical results for small Re and the numerical results at finite Re. An 
expression is proposed to modify the history force for small and finite Reynolds 
numbers. The integration kernel decays as (t’-r)-’ a t  large time, rather than the 
classical behaviour of (t’ - r)-f, even for very small Reynolds numbers. The expression 
for the modified history force in the time domain is verified by Fourier transforming 
the interpolated expression in the time domain into the frequency domain and 
comparing it with the finite-difference results which are obtained in the frequency 
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domain. Present results are valid for the case of small-amplitude fluctuations in the 
free-stream velocity but may be generalized to cases with large-amplitude 
fluctuations. 
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